From Sclerotherapy and Ablative Surgery to Three-Dimensional Regenerative Ambulatory Phlebotherapy (T.R.A.P.)

S. Capurro

Chirurgia Plastica e Ustioni, S. Martino Hospital, Genoa, Italy

Abstract

Our aim is to permanently restore the perforating and superficial circulation in the lower limbs. This objective can be achieved by reducing the diameter of the vessels and strengthening the vessel walls, thereby reducing their excessive capacity and restoring valvular continence. Logically, this cannot be achieved by means of an obliterative or ablative procedure, but only a “regenerative” method. The phenomenon that we call “regeneration” involves fibrosis that is neither sclerotic nor obliterative. Three-dimensional regenerative ambulatory phlebotherapy (T.R.A.P.) is a non-obliterative “sclerotherapy” which extends to the superficial and perforating network. T.R.A.P. is carried out by injecting, sodium salicylate 6% in an alkaline hydroglycerin vehicle, (from 10.5 to 31.5 ml) into all visible vessels, including those visualised by means of transillumination. T.R.A.P. yields an aesthetic and functional result. The results obtained have proved to be stable after six years, thus demonstrating the functional effect of the method.

Introduction

The functional anatomy of the venous circulation in the lower limbs reveals that the valvular insufficiency of the perforating veins and the ectasia of the truncal veins, reticular veins, venules and telangiectasias are, except for rare cases (mechanical obstructions, traumas, arteriovenous fistulas, congenital angiopathies, excessive functional performance (1), prolonged exposure to heat or sun, cortisone application, radiodermatitis, inflammation, chronic skin disorders, etc) due to congenital miopragia of the vessel walls (1, 2, 3, 4, 5). This condition is manifested under the influence of hemodynamic pressure,
age, hormones, posture, habits and numerous other pathogenic factors. Miopragia
involves, albeit to different degrees, the entire superficial and perforating
circulation. The progressive weakening of the walls of the vessels that con-
nect the superficial circulation with the deep circulation causes the valves to
become incontinent. The resulting anomalous pressure in the superficial cir-
culation causes the vessels to dilate, an effect which is first manifested in
those vessels whose anatomical structure is least resistant.

Valvular insufficiency is dynamic. Contraction of the so-called ‘peripheral
heart’, which is constituted by the leg muscles, generates the highest venous
pressure: up to 300 mm of mercury (6, 7). This region, which is of strategic
importance for the correct functioning of the venous circulation, contains
about 100 perforating veins (8), as well as the origin of the small saphenous
vein. By contrast, the valvular and ostial incontinence of the great saphenous
vein is of marginal importance with regard to pressure, since the hydrostatic
pressure at the ankle is 80/100 mm of mercury regardless of whether the
valves are continent or not (9,10).

Venous insufficiency therefore displays multiple clinical manifestations,
but what is evident is that the ectatic veins that can be seen with the naked
eye and those that can be seen only by means of transillumination represent
the quantity of blood that escapes from the deep circulation. The ectatic
vessels therefore constitute escape valves for hemodynamic hypertension. If
we reduce this venous network without treating the cause of the disorder, the
pressure on the superficial circulation will increase and the initial unsightly
conditions will soon restored.

The anatomical-physiological considerations outlined above, and the fact
that phlebectasias very often recur after traditional obliterative sclerotherapy
and ablative surgery, have prompted us to adopt a radically different ap-
proach. Since it is not conceptually possible to obliterate or remove the entire
superficial circulation together with all the perforating veins we have experi-
enced a method that is not obliterative or ablative. Three-dimensional regen-
erative phlebotherapy shifts the focus of the therapy from the superficial
ectatic vessels and some of the major perforating vessels to the entire super-
ficial and perforating circulation. Rather than obliterating the vessel, it aims
at reducing the caliber of the lumen and thickening and strengthening the
vessel walls. To describe these non-obliterative fibrotic effects on the vessel
wall, we have adopted the term “regeneration”. This term has been chosen in
order to highlight the fact that the vascular structure is restored to its pre-
phlebectasia condition. Histological examination reveals reduced calibre of
the lumen and consolidated the connective structure of the treated vessels
(fig.1)

The solution

On the basis of studies and experimentation on non-aggressive effective
solutions, we adopted a 6% solution of sodium salicylate in an alkaline
hydroglycerin vehicle (Bisclero) (11). The 6% “regenerative” solution exerts
a strengthening effect and can be injected without risk at high individual or
total doses. In addition to the 6% solution, we also use a 10% solution, which is injected primarily in cases of hemodynamic matting. The solutions were formulated in 1992 and their formulae were published in 1993 (12). Sodium salicylate was chosen because it has both anti-inflammatory and an anti-clotting effect. Its alkaline pH is useful in that it limits the absorption of the salicylate, neutralizes its metabolites and accelerates its excretion. The hydroglycerin vehicle slows down the flow of the solution in the vein, thereby allowing the sodium salicylate to remain in contact with the endothelium for a longer time.

Technique

The lower limb is subdivided into three functional regions: medial, posterior and lateral. First, the medial region of the foot, lower leg and thigh is injected; a week later, the posterior region is treated, followed in the third week, by the lateral region. During the fourth week, the first region is treated again, and so on. If the disorder is mild, two regions, or even the entire limb, may be treated in the same session. Once the skin has been disinfected, the 6% Bisclero solution, to which 0.5 ml of 1% lidocaine chlorhydrate has been added inside a 3 ml vial, is injected. The addition of lidocaine is useful on account of its analgesic, anti-inflammatory (13) and vasodilatory action (14, 15). The operator begins by injecting the phlebectatic corona in the foot. In
In this area we add 1 ml of lidocaine to the 3 ml vial. Working upwards towards the root of the thigh, the operator injects in order, from 10.5 to 31.5 ml into all visible vessels encountered, including those visualized by means of transillumination. The principal concepts that we modified are outlined in Tab. 1

Results

The effect of T.R.A.P. is clearly visible on the surface of the skin (Fig.2, 3). The fact that the results obtained (tab.2), seem to be permanent is the most convincing proof that functional integrity has been restored.

Discussion

Traditional obliterative sclerotherapy and surgical ablation do not respect
the anatomical and functional integrity of the circulation, nor do they correct miopragia. They act exclusively on the full-blown aspects of the alteration in venous circulation, while the disorder is sustained by perforating vessels which reveal their insufficiency only when the patient runs or walks. Clearly then, the insufficiency of even a small percentage of these vessels, which cannot be revealed by means of the instruments available, can thwart any traditional treatment and give the erroneous impression that ectatic veins can form without a hemodynamic cause, apart from the causes listed above. T.R.A.P. constitutes a step forward from traditional sclerotherapy, which mainly treats the effect of valvular insufficiency, to a non-obliterative therapy that extends to the entire superficial and perforating circulation, thereby treating the cause of the disorder as well as its effect. T.R.A.P. uses a non-aggressive well-tolerated solution that exerts a constant action and can be injected in large quantities. In patients with very evident varices, superficial varicosity may remain even after proper blood flow has been restored. The rare residual varicose veins must either be obliterated by injecting a small amount of obliterator sclerosing solution or be excised. Any varicosity that remains after T.R.A.P. will involve vessel segments in which, as a result of dilation, the wall has become too thin to respond to the therapeutic action of the “regenerative” solution Bisclero.

Figure 2 (Above) Phlebectatic corona. (Center) Immediately after the second session. (Below) Result after the third session.

Figure 3 (Left) Patient who had never undergone any therapy. (Center) Immediately after T.R.A.P. in the posterior region of the left leg, 28 ml of solution have been injected. (Right) Result after three sessions.
Conclusion

The limits to three-dimensional regenerative ambulatory phlebotherapy will only be established when the method is more widely used, more complex disorders are treated and the results are monitored over a long period. At present, however, the minimal invasiveness of the technique, its preservation of anatomical integrity, its ease of execution, the high quality and persistence of the results, the rapidity with which they are achieved, the absence of complications and the satisfaction of the patients treated indicate that, in terms of efficacy and safety, T.R.A.P. is far superior to any of the techniques that we previously used, surgery included.

References

Tab. 2 Efficacy of T.R.A.P on 100 patients (only one limb*)

<table>
<thead>
<tr>
<th>Patient Classification des patients</th>
<th>Number of patients</th>
<th>Number of sessions</th>
<th>Cumulative dose of 6% solution</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>A) isolated capillary ectasias</td>
<td>10</td>
<td>2÷3</td>
<td>12÷27</td>
<td>100%</td>
</tr>
<tr>
<td>B) isolated capillary and venular ectasias</td>
<td>24</td>
<td>2÷4</td>
<td>18÷36</td>
<td>5% 95%</td>
</tr>
<tr>
<td>C) diffuse capillary ectasias</td>
<td>6</td>
<td>2÷8</td>
<td>18÷72</td>
<td>30% 70%</td>
</tr>
<tr>
<td>D) diffuse capillary and venular ectasias</td>
<td>40</td>
<td>9÷12</td>
<td>108÷144</td>
<td>10% 90%</td>
</tr>
<tr>
<td>E) diffuse capillary, venular and venous ectasias</td>
<td>20</td>
<td>9÷18</td>
<td>135÷243</td>
<td>70% 20% 10%</td>
</tr>
</tbody>
</table>

*The limb chosen is that in which objective clinical signs are more evident.

Visual reference parameters; control: contralateral limb. Results: 1st) vessels no longer visible at a distance of 150 cm. 2nd) vessels no longer visible at a distance of 50 cm. 3rd) vessels no longer visible on observation with a magnifying glass.

Acknowledgements
I wish to thank Silvia Perrella Segre, Bernard Patrick, Angela Sementa, Aberto Cavalchini, for their contribution to this work.

Competition of interest: the author holds the patent for the invention of the Bisclero solutions (11)